An Efficient Stereoselective Synthesis of Cytotoxic 8-E pipuupehedione

Veronica Armstrong, ${ }^{*, \dagger}$ Alejandro F. Barrero, \ddagger Enrique J. Alvarez-Manzaneda, ${ }^{\ddagger}$ Manuel Cortés, ${ }^{\dagger}$ and Beatriz Sepúlveda ${ }^{\dagger}$

Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile, and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Received J anuary 31, 2003
An efficient and highly stereoselective synthesis of cytotoxic 8-epipuupehedione (lb) was achieved starting from natural (-)-drimenol (6). The key step to obtain stereoselectivity was the simultaneous demethylation and oxidation of the dihydrobenzopyran methoxy derivatives 10a and 10b.

Marine sponges are recognized as a rich source of structurally unique and biologically active terpenoids. ${ }^{1}$ Puupehedione (1a) was isolated from a sponge of the order Verongida and was characterized as a metabolite featuring a sesquiterpene unit joined to a shikimate-derived moiety. ${ }^{2}$ The cytotoxic activity of $\mathbf{l a}$ and its synthetic, non-natural, 8-epimer $\mathbf{1 b}$ was assayed against the cell lines P-338, A-549, HT-29, and MEL-28, ${ }^{3}$ and the most active compound was found to be 8 -epi puupehedione (1b).
The syntheses previously reported for $\mathbf{1 a}$ and $\mathbf{1 b}{ }^{3,4}$ were based on electrophilic cyclization of suitable intermediates to the respective dihydrobenzopyrans as methylenedioxy derivatives ($\mathbf{2 a}$ and $\mathbf{2 b}$), followed by oxidative cleavage of the methylenedioxy moiety. As we have previously established, ${ }^{3}$ the oxidative process involves ring opening and subsequent cyclization to obtain $\mathbf{1 a}$ and $\mathbf{1 b}$ in the same 1:4 relative proportion, independent of the C-8 epimeric ratio for the starting methylenedioxy derivatives.

1a ($\mathrm{C}_{8}-\mathrm{Me} \alpha$)
1b ($\mathrm{C}_{8}-\mathrm{Me} \beta$)

2a ($\mathrm{C}_{8}-\mathrm{Me} \mathrm{\alpha}$)

2b ($\mathrm{C}_{8}-\mathrm{Me} \beta$)

Our strategy here involves nucleophilic addition of the organol ithium derived from 5 to drim-7-en-11-al (7), ${ }^{5}$ easily available from natural (-)-drimenol (6) ${ }^{6,7}$ (Figure 1). The aromatic synthon 5 was prepared in high yield from 3,4dimethoxybenzaldehyde (Figure 2). Addition of aldehyde 7 to the aryllithium derived from 5, and subsequent deprotection of the silyl ether, afforded 8/9 in a ratio of 3:1 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR). Acid-mediated cyclization of the mixture gave 10a and 10b in a ratio of 1:3. Simultaneous demethyIation and oxidation of the epimeric dihydrobenzopyrans $\mathbf{1 0 a}\left(\mathrm{C}_{8}-\mathrm{Me}_{\alpha}\right)$ and $\mathbf{1 0 b}\left(\mathrm{C}_{8}-\mathrm{Me}_{\beta}\right)$ with $\mathrm{AgO}-\mathrm{HNO}_{3}{ }^{8}$ led to o-quinones $\mathbf{1 a}$ and $\mathbf{1 b}$ (1:3). A further straightforward route was studied. Direct treatment of the condensation product with acid, without previous deprotection of the tert-butyldimethylsilyl ether, afforded 10a and 10b in a ratio 1:8.

[^0]

Figure 1. Summary of synthetic transformations to produce 8-epipuupehedione (1b). Reagents: (i) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) $\mathrm{BuLi}, 5, \mathrm{Et}_{2} \mathrm{O}, 7$, TsOH, $\mathrm{C}_{6} \mathrm{H}_{6}$; (iii) BuLi, 5, Et ${ }_{2} \mathrm{O}, \mathbf{7}, \mathrm{TBAF}, \mathrm{THF}$; (iv) $\mathrm{TsOH}, \mathrm{C}_{6} \mathrm{H}_{6}$; (v) $\mathrm{AgO}-\mathrm{HNO}_{3}, \mathrm{THF}$.

Simultaneous demethylation-oxidation of the mixture gave the epimeric $\mathbf{1 a}$ and $\mathbf{1 b}(1: 8)$. The relative proportion was the same as that obtained for the dihydrobenzopyran methoxy derivatives, since the well-known reaction with AgO in acid medium ${ }^{8}$ avoids ring opening, due to very fast oxidation. These results suggest that, under acidic conditions, the main product arises from attack on the less hindered α side, and the epimeric ratio seems to depend on the effective free nucleophilic group.
The present work represents the shortest and most efficient synthesis for the highly bioactive 8-epipuupehedione (1b).

Figure 2. Synthesis of 2-bromo-1-tert-butyldimethylsilyloxy-4,5dimethoxybenzene (5). Reagents: (i) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) $\mathrm{NaOH}-$ MeOH ; (iii) TBDMSCI, imidazole, DMF; (iv) $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}$.

Experimental Section

General Experimental Procedures. NMR spectra were recorded on a Bruker AM-200 and a Bruker Avance DRX-300 spectrometer. Carbon multiplicity was established by a DEPT pulse sequence. HRMS were obtained on a trisector WG AutoSpecQ spectrometer. Chromatographic separations were carried out on Merck silica gel 60 (230-400 mesh), using hexane-EtOAc gradients of increasing polarity. All organic extracts were dried over magnesium sulfate and evaporated under reduced pressure, below $65^{\circ} \mathrm{C}$.

Synthesis of 5 (2-Bromo-1-tert-butyldimethylsilyloxy-4,5-dimethoxybenzene). TBDMSCI (18.0 mmol) and imidazole (15.0 mmol) were added to a solution of phenol 3 (15.0 mmol) in anhydrous DMF and stirred for 15 h . Usual workup ${ }^{3}$ and column chromatography gave 4 (92\%) as a colorless oil: HRMS (FAB+) found 291.1394 (cal cd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{NaSi}$, [M + $\mathrm{Na}]^{+}$291.1392). Compound $\mathbf{4}(5.9 \mathrm{mmol})$ was treated, at $0^{\circ} \mathrm{C}$, with bromine (6.0 mmol) in chloroform. After stirring for 1 h , a solution of sodium thiosulfate was added, and the mixture was further stirred 1 h . Usual workup ${ }^{3}$ and column chromatography gave 5 (95\%) as a colorless oil: HRMS (FAB+) found 369.0495 (calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{NaSiBr},[\mathrm{M}+\mathrm{Na}]^{+} 369.0498$).

Synthesis of 10a (9-Dehydro-19,20-di-O-methylpuupehenol) and 10b (9-Dehydro-8-epi-19,20-di-O-methylpuupehenol). Aryllithium Addition. A 1.6 M solution of butyllithium in hexane (3.0 mL) was added, at $-78^{\circ} \mathrm{C}$, to a solution of 5 (4.5 mmol) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$, under N_{2}. After stirring for $45 \mathrm{~min}, 7$ (1.96 mmol) was added, and the stirring continued for 1 h , at $-78^{\circ} \mathrm{C}$. Water was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$.

Cyclization. The crude obtained above, by aryllithium addition, was dissolved in benzene, p-toluenesulfonic acid (2.0 mmol) was added, and the mixture was stirred at rt for 16 h . Usual workup ${ }^{3}$ and column chromatography gave 10a/10b (ratio 1:8) (90% from 7) as a colorless oil: ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz) 10a $\delta 6.58(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-21), 6.45(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 6.09(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-15), 1.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-13), 1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-14), 0.95(3 \mathrm{H}, \mathrm{s}$,

Me-11), 0.87 (3H, s, Me-12); 10b $\delta 6.54$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-21$), 6.42 (1 H , s, H-18), 6.06 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$), 1.40 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-13$), 1.15 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}-14), 0.92(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-11), 0.87$ (3H, s, Me-12); ${ }^{13}$ CNMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right.$), signals asignable to 10b, $\delta 149.5$ (C-9), 148.7 (C-19), 145.6 (C-17), 143.1 (C-20), 114.9 (C-16), 113.9 (C-15), 109.3 (C-21), 100.5 (C-18), 77.9 (C-8), 52.1 (C-5), 41.5 (C-3), 41.4 (C-7), 38.9 (C-10), 37.9 (C-1), 33.7 (C-4), 33.5 (C-11), 26.0 (C-13), 23.5 (C-14), 21.6 (C-12), 19.2 (C-6), 18.8 (C-2); HRMS ($\mathrm{FAB}+$) found 379.2251 (calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na},[\mathrm{M}+\mathrm{Na}]^{+}$ 379.2249).

Silyl Ether Deprotection. The crude (0.8 g) previously obtained, by aryllithium addition, was dissolved in THF, and tetrabutylammonium fluoride (1.1 mmol) was added. After stirring for 15 min at rt , water was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Workup ${ }^{3}$ gave 8/9 (ratio 3:1) as a col orless oil: ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right.$) asignable to 8 (11-(2-hydroxy-4,5-dimethoxyphenyl)drim-7-en-11-ol, $\delta 6.43$ (1H, $\mathrm{s}, \mathrm{H}-3), 6.37(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 5.69\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-7^{\prime}\right), 5.42(1 \mathrm{H}, \mathrm{bs}$, H-11'), 2.51 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-9^{\prime}$), 1.62 (3H, s, Me-12'), 1.07 (3H, s, $\mathrm{Me}-14^{\prime}$), 0.94 (3H, s, $\left.\mathrm{Me}-13^{\prime}\right), 0.91$ (3H, s, Me-15'). Fractions of pure 9 (6-(7-drimen-11-yliden)-3,4-dimethoxy-2,4-cyclohexadienone) could be obtained: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) ~ \delta 7.11$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}, \mathrm{H}-11^{\prime}$), $6.15(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 5.79(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$, $5.59\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-7^{\prime}\right), 3.00\left(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=12.7 \mathrm{~Hz}, \mathrm{H}-9^{\prime}\right), 1.53(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Me}-12^{\prime}\right), 0.99$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-14^{\prime}$), 0.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-13^{\prime}$), 0.89 (3 H , $\left.\mathrm{s}, \mathrm{Me}-15^{\prime}\right)$; ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 184.1$ (C-1), 164.7 (C3), 148.6 (C-11'), 147.8 (C-4), 133.7 (C-8)), 131.8 (C-6), 123.1 (C-7'), 104.2 (C-2), 100.1 (C-5), 54.4 (C-9'), 49.8 (C-5'), 42.3 (C$\left.3^{\prime}\right), 41.0\left(\mathrm{C}-1^{\prime}\right)$, 38.6 ($\left.\mathrm{C}-10^{\prime}\right)$, 33.3 ($\left(-13^{\prime}\right)$, 33.2 ($\left.\mathrm{C}-4^{\prime}\right)$), 23.7 ($\mathrm{C}-$ 6^{\prime}), 22.5 (C-14'), 22.0 (C-12'), 18.6 (C-2'), 15.0 (C-15'); HRMS $\left(\mathrm{FAB}+\right.$) found 379.2249 (calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na},[\mathrm{M}+\mathrm{Na}]^{+}$ 379.2249).

Acknowledgment. Support by DIPUC (Grant 99/12E), TWAS (Grant 00-255 RG/CHE/LA), and CYTED (Project IV.12) is gratefully acknowledged.

References and Notes

(1) Faulkner, D. J. Nat. Prod. Rep. 1998, 113-158, and references therein.
(2) Hamann, M. T.; Scheuer, P.J.; Kelly-Borges, M. J . Org. Chem. 1993, 58, 6565-6569.
(3) Barrero, A. F.; Alvarez-M anzaneda, E. J.; Chahboun, R.; Cortés, M.; Armstrong, V. Tetrahedron 1999, 55, 15181-15208.
(4) Maiti, S.; Sengupta, S.; Giri, C.; Achari, B.; Banerjee, A. Kr. Tetrahedron Lett. 2001, 42, 2389-2391.
(5) González-Sierra, M.; Rúveda, E. A.; López, J. T.; Cortés, M. J. Heterocycles 1986, 26, 2801-2804.
(6) Isolated from the bark of D. winteri. See: Appel, H. H.; Brooks, J. W.; Overton, K. H. J . Chem. Soc. 1959, 3322-3332.
(7) (-)-Drimenol can be obtained in optically pure form from t,t-farnesol. Resolution of racemic $\mathbf{6}$ was achieved via chromatographic separation of the diasteromeric camphanoates. See: (a) Arjona, O.; Garranzo, M.; Mahugo, J.; Maroto, E.; Plumet, J.; Sáez, B. Tetrahedron Lett. 1997, 38, 7249-7252. (b) J ordine, G.; Bick, S.; Möller, U.; Welzel, P.; Daucher, B.; Maas, G. Tetrahedron 1994, 50, 139-160. (-)-Drimenol can be obtained also from (-)-sclareol through drimenyl acetate in a five-step synthesis with 42% overall yield. See: (c) Barrero, A. F.; Alvarez-Manzaneda, E. J.; Altarejos, J.; Salido, S.; Ramos, J. M. Alvarez-Manzaneda, E.
(8) Snyder, C. D.; Rapoport, H. J. Am. Chem. Soc. 1972, 94, 227-231.

NP030029R

[^0]: * To whom correspondence should be addressed. Tel: 5626864434. Fax: 5626864744 . E-mail: aarmstrl@puc.cl.
 + Pontificia Universidad Católica de Chile.
 ₹ Universidad de Granada.

